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Abstract—Discriminative Correlation filter (DCF) based track-
ers have recently exhibited high efficiency and impressive ro-
bustness to challenging factors such as illumination change and
partial occlusion. However, in cases with fast motion and full
occlusion, these trackers drift off soon and can hardly re-
detect the target from the restricted search region due to the
boundary effect. On the contrary, recent work using a fully-
convolutional Siamese network (Siamfc) locates the exemplar
image within a large search image but suffers from coarse
location and distractors. In this paper, we propose a Real-time
Complementary Tracker (RCT) by integrating DCF and Siamfc
into a two-stage tracking framework where DCF and Siamfc
share mutual advantages and complement each other. In the
first stage of this framework, RCT locates the target coarsely
but robustly with Siamfc. In the second stage, the derived coarse
location is refined by DCF for higher accuracy. For efficiency
reasons, Siamfc in the first stage is activated occasionally based
on the tracking status inferred from the correlation response
map of DCF in the second stage. Comprehensive experiments
are performed on three popular benchmark datasets: OTB2013,
OTB2015 and VOT2016. On OTB2013, RCT runs with over 40
fps and achieves an absolute gain of 4.8% and 5.2% in mean
overlap precision compared with two base trackers (Staple and
Siamfc). On VOT2016, RCT makes a good balance between
performance and efficiency, ranking fifth in EAO and first in
EFO compared with the top 5 trackers.

Index Terms—correlation filter, Siamese network, complemen-
tary tracking.

I. INTRODUCTION

V ISUAL object tracking is an established yet rapidly
evolving research area in computer vision. In general,

it aims to estimate the spatial trajectory of a target object
in an image sequence, given its initial state, i.e. location
and underlying area. It provides a fundamental component
for high-level visual understanding problems such as motion
analysis, event detection, situational awareness, and activity
recognition. Despite significant progress in recent years, find-
ing the corresponding object regions across multiple frames is
still a challenging problem due to factors such as occlusion,
deformation, illumination change, fast motion and background
clutter. In this paper, we focus on single-camera, single-target,
short-term and model-free tracking, and refer readers to [1],
[2], [3] for a thorough overview of existing algorithms.

Most tracking approaches adopt the tracking-by-detection
principle to locate the target object. According to their
consolidated appearance representation schemes, tracking-by-
detection methods can be categorized into generative methods
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Fig. 1: Comparisons of our approach with four other state-of-
the-art correlation filter based trackers in challenging scenarios
of fast motion on skiing sequence (left) and full occlusion on
jogging-1 sequence (right) in the OTB2013 benchmark dataset
[1]. As visible, our approach (red) was able to catch up with
the fast-moving skier in skiing and re-detect the person after
the full occlusion in jogging-1.

[4], [5], [6] and discriminative methods [7], [8], [9]. Gen-
erative methods model target appearance often by ignoring
the background information, which leads to drift issues in
complex scenes, while discriminative methods pose tracking
task as a binary classification objective that discriminates the
object from its surrounding background. Recently, correlation
filter based discriminative trackers demonstrated significant
performance improvement in terms of accuracy and robustness
on several benchmarks [3], [2]. Generally speaking, correlation
filters locate the target object in a very restricted target search
area. This limitation is due to the fact that the detection
scores are accurate only near the center of the region as a
result of the boundary effects. This confined search region
often causes the estimated region to stay behind the target
object, contaminating the object model with background in-
formation, as in Figure 1 in the presence of fast motion and
full occlusions. SRDCF [10] alleviates this boundary effect to
some extent by expanding the search area to a more extensive
region with a spatial regularization component. However, such
an expansion of the search region comes at the price of a
significant slowdown in the tracking speed.

Recent works [11], [12], [13] have shown impressive per-
formance using Siamese networks. Among them, Siamfc [11]
addresses visual tracking as a universal similarity learning
problem with an offline trained Siamese network. Without
model updating, Siamfc achieves state-of-the-art performance
and runs with over 80 fps on Graphics Processing Units
(GPUs). On the one hand, the absence of model updating
avoids fine-tuning during online tracking, yet on the other, it
blurs the intra-class difference. As a result, Siamfc often drifts



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2892759, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTION ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2

to similar background regions (hard negatives) in complex
scenarios as shown in Figure 2.

Fig. 2: Results of our approach, Siamfc and Staple on football
sequence where the scenes contains similar objects, from the
OTB2013 benchmark dataset [1]. Both Siamfc and Staple fail
to keep the original target and drift towards other similar
objects; the offline Siamese network generates high scores for
any region that has a similar appearance to the initial target
appearance while Staple is stranded in regions that have similar
color cues. In comparison, our approach is resistant to such
distractors.

Despite different tracking mechanisms, correlation filters
and Siamfc are mutually complementary in the following
ways:

(1) Online versus Offline. Correlation filters perform model
update in an interpolated manner while Siamfc is initialized
once with the bounding box in the first frame.

(2) Spatial versus Semantic. Correlation filters usually em-
ploy handcrafted features (e.g., HOG [14]) which are sensitive
to pose, spatial arrangement of parts, and local texture. In
contrast to correlation filters, Siamfc extracts features maps
from the higher layers of a deep neural network. These
features maps are robust to significant appearance variations
(depending on the training process and data augmentation)
compared with the handcrafted features.

(3) Fine-grained versus Coarse-grained. In comparison to
low-level handcrafted features, the semantically interpretable
feature map in Siamfc is relatively coarse for accurate location.

(4) Small Search Region versus Large Search Region. Cor-
relation filters can only locate the target in a limited search
region due to the boundary effects. However, Siamfc can
execute search in a larger region to cope well with fast
object/camera motion and full occlusions.

Inspired by the aforementioned observations, we propose
a real-time running complementary tracker (termed as RCT)
that takes advantage of the merits of correlation filters and
Siamfc. In each frame, RCT estimates the target translation in
a two-stage scheme. In the first stage, RCT locates the target
coarsely but robustly with semantic convolutional features in a
larger search region. The semantic feature maps of Siamfc are
extracted as the activations from the fifth convolutional layer.
Therefore, these feature maps are in low-resolution yet repre-
sentative of the high-level semantics, which are considered to
be robust to significant appearance variations of the target. In
the second stage, the coarse location derived in the first stage is
refined by a correlation filter for higher spatial resolution posi-
tioning of the target object. For efficiency purposes, Siamfc is
activated infrequently when the peakiness of the response map

of the correlation filter is below an adaptive threshold. Rather
than searching jointly in both translation and scale dimensions,
we follow Danelljan et al. [15] and learn a distinct, multi-scale
template for scale search using a 1D Correlation Filter.

We perform an extensive set of experiments on three pop-
ular benchmark datasets: OTB2013 [1], OTB2015 [2] and
VOT2016 [3]. Compared with a single correlation filter or a
Siamese network based tracker, our RCT method consistently
outperforms the baseline trackers on OTB2013 in the success
plots using the area under the curves (AUC) while maintaining
an average tracking speed of over 40 fps. On VOT2016, RCT
makes a good tradeoff between the accuracy and efficiency,
ranking fifth in EAO and first in EFO among the top 5 trackers.

II. RELATED WORK

For completeness, we provide a brief overview of the most
relevant works.

Correlation Filter for online Tracking. In recent years,
correlation filter based trackers have shown continuous per-
formance improvements in terms of accuracy and robustness.
Standard correlation filters transform spatial correlation into
element-wise multiplication in the Fourier domain and at-
tract considerable attention in the tracking community due
to their extremely high computational efficiency. Different
variants of correlation filters have been proposed to boost
tracking performance using multi-dimensional features [16],
robust scale estimation [15], non-linear kernels [9], long-term
memory components [17], target response adaptation [18]
and complementary cues [19]. The pioneering MOSSE tracker
proposed by Bolme et al. [20] conducts spatial correlation
in the frequency domain and achieves a runtime of over 600
frames per second (fps). Later, correlation filters have been
extended to multi-dimensional features for visual tracking.
Seminal followup work by Henriques et al. [9] formulated
learning correlation filters as a ridge regression problem and
exploited circular correlation at both learning and detection
stages. A discriminative scale space tracker (DSST) [15] is
proposed by Danelljan et al. to achieve real-time scale adaptive
tracking. Bertinetto et al.[19] combine a correlation filter
and a global color histogram to achieve robustness to both
deformation and color change.

Despite the above mentioned achievements, two issues
remain unsolved in correlation filter based real-time tracking:

(a) The restricted search region. Standard correlation filter
based trackers suffer from period assumption induced by
circular correlation. This leads to a restricted search region
because the correlation scores are only accurate near the center
of the search region. SRDCF [10] alleviates the boundary
effect and expands the search area to a larger region. However,
the real-time tracking speed is sacrificed at the same time
due to the Gauss-Seidel iterations in the spatially reguralized
component. Therefore, how to extend the search region while
maintaining a real-time speed remains an unsolved issue for
correlation filters.

(b) Linear interpolation for model update. Generally, cor-
relation filter based trackers linearly interpolate the filter
coefficients in the previous and current frames to cope with
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target appearance variation. However, this linear interpolation
heavily relies on the spatio-temporal consistency of visual cues
and suffers from noisy model update in presence of abrupt
motion, severe deformation and heavy occlusion. Therefore,
how to adapt to appearance change while maintaining model
stability (i.e. stability-plasticity dilemma) remains a pending
problem for correlation filter based tracking.

Siamese Architecture for Tracking. Recently, Convolutional
Neural Networks (CNNs) have significantly advanced the
state-of-the-art in many vision applications, such as image
classification [21], object detection [22] and saliency detection
[23]. Driven by this popular trend, many correlation filter
based trackers [24], [25] substitute handcraft features with
deep convolutional features and achieve superior tracking
performance. However, simply regarding CNN as a feature
extractor does not take full advantage of the benefits of end-
to-end learning. To fully exploit the representation power of
CNN in visual tracking, it is desirable to train them on large-
scale dataset specialized for visual tracking. Prior works [26],
[27] train CNN offline with massive data and perform SGD
(stochastic gradient descent) to fine-tune multiple layers of
the network during online tracking. All these methods achieve
state-of-the-art results but fail to operate in real-time. Recently,
the Siamese architecture has been exploited in the tracking
field and shows impressive performance. Tao et al. [12]
propose to train a Siamese network to identify candidate image
locations that match the initial object appearance and term
their method as Siamese INstance search Tracker (SINT).
Held et al. [13] introduce GOTURN which avoids the need to
score many candidate patches and runs at 100 fps. However,
GOTURN does not possess intrinsic invariance to translation
of the search image. Later, Luca et al. train a similar Siamese
network (Siamfc) to locate an exemplar image within a large
search image. The network parameters are trained from scratch
on the ILSVRC Imagenet Video dataset [28]. Despite its
extreme simplicity and absence of model updating, Siamfc
achieves state-of-the-art performance on multiple benchmarks.
In this section, we argue that there are three factors which may
hinder the applicability of Siamfc:

(a) Low efficiency without GPU. Siamfc only runs in
real-time on GPU due to the convolution operations in the
Siamese networks. The high computational expense limits
its applicability in many real-time applications with limited
hardware capabilities, such as aerial tracking using unmanned
aerial vehicle (UAV).

(b) The low-resolution score map. Siamfc extracts high-
level semantic feature maps from both the exemplar image
and the search image. A low-resolution score map is obtained
by computing cross-correlation of the two feature maps on
a 17×17 grid. Although tricks like bicubic interpolation are
applied to up-sample the score map, the score map is still
relatively coarse for fine-grained tracking.

(c) Confusion with distractors. Without model updating,
Siamfc is free from noisy update but, on the other hand, is
blind to target appearance variation. Meanwhile, the high-
level semantic features fail to capture the spatial details of
the target appearance. As a result, Siamfc ignores the intra-

class variation and tends to drift to similar confusing objects
resembling the initial target appearance.
Combining Correlation Filters and CNNs Discriminative
Correlation Filter (DCF) and Convolutional Neural Network
(CNN) based trackers have achieved considerable popularity
in the tracking community. This phenomenon is especially
evident from the outcome of the Visual Object Tracking
(VOT) 2016 challenge [3], where eight trackers are based on
either DCF or CNN among the top ten trackers. Therefore,
we argue that state-of-the-art tracking performance can be
further improved if we establish a unified tracking framework
utilizing the advantages of both DCF and CNN. By now,
only limited work focuses on the combination of DCF and
CNN due to their different tracking mechanism. Danelljan
et al. [24] conduct the pioneering work by introducing deep
convolutional features into the DCF-based tracking framework.
Ma et al. [29] learn correlation filters on each convolutional
layer to encode the target appearance and hierarchically inter
the maximum response of each layer to locate the targets.
Recently, Ma et al. [30] investigate the potential of correlation
filters as the counterparts of convolution filters in deep neural
networks for tracking. Inspired by [29], [19], in this work, we
propose a hybrid tracking framework in which DCF and CNN
share their mutual advantages and complement each other.

III. BUILDING BLOCKS

We employ Staple [19] and Siamfc [11] as the building
blocks for our tracker RCT. It is worth to mention that RCT
is a very flexible tracking framework and our implementation
is far from optimal. We believe there is a room for future
improvement and generalization. In the following discussion,
we give a brief overview of two building blocks incorporated
in our tracker.

A. Siamfc

Compared with correlation filter based trackers, the advan-
tage of Siamfc is that, instead of a candidate image of the
same size, we can provide as input to the network a much
larger search image and it will compute the similarity at all
translated sub-windows on a dense grid in a single evaluation.
This larger search image equips Siamfc with a large field of
vision to cope with abrupt motion and heavy occlusion.

Siamfc applies an identical transformation ϕ (similar to
[31]) to both the exemplar image z and search image x and
combines the resulting feature maps using a cross-correlation
layer

f(z, x) = ϕ(z) ∗ ϕ(x) + b1 (1)

where b1 is a vector which takes the value b ∈ R in all of its
coefficients, and f(z, x) is the real-valued score of a single
exemplar-candidate pair.

The neural network is trained on both positive and negative
pairs adopting the logistic loss

`(y, f(z, x)) = log(1 + exp(−yf(z, x))) (2)

where y ∈ {+1,−1} is the ground-truth label of the exemplar-
candidate pair.
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Since the search image is larger than the exemplar image,
Siamfc generates a score map D where the loss is defined as
the mean of the individual losses as described as following,

L(y, f) =
1

|D|
∑
u∈D

l(y[u], f [u]). (3)

The parameters θ of ϕ are obtained by applying Stochastic
Gradient Descent (SGD) to the problem

arg max
θ

E(z,x,y)L(y, f(z, x; θ)). (4)

During the tracking process, a larger image patch is cropped
and fed into the Siamese network, which generates the re-
sponse map for target localization. Readers can refer to [26] for
other details in training data preparation and network training.

B. Staple

Combining a correlation filter (using HOG features) with a
global color histogram, Staple solves two independent ridge-
regression problems, exploiting the inherent structure of each
representation. Here, we briefly describe the Staple formula-
tion, adopting the same notations as in [19] for convenience.
The score function of Staple is a linear combination of
template and histogram scores:

f(x) = γ · ftmpl(x) + (1− γ) · fhist(x) (5)

where γ is an interpolation parameter, ftmpl is the template
score and fhist is the histogram score.

The aim of the template model is to learn a d-dimensional
correlation filter h from a d-dimensional feature f . We denote
the feature layer l ∈ {1, · · · , d} of f by f l. The desired output
of y is a scalar valued function, which includes a label for
each location in the feature f . The desired correlation filter h
is obtained by minimizing the following target function,

ε(h) =

∥∥∥∥∥
d∑
l=1

f l ∗ hl − y

∥∥∥∥∥
2

+ λ
d∑
l=1

∥∥hl∥∥2
. (6)

Here, * denotes the convolution operator and the regular-
ization scalar λ controls the impact of the regularization term.

Based on the circulant assumption, the solution to (6) is
derived as following

ĥl =
f̂ l

∗ · ŷl∑d
l=1 f̂

l∗ · f̂ l + λ
. (7)

Here, f̂ lj means the Fourier transform of f lj and f̂ l
∗

j means
the complex conjugation of f̂ lj . The product and division in
(7) is point-wise.

By contrast, we calculate the object likelihood of each pixel
belonging to the foreground object in the histogram model.
Let HI

Ω(b) denote the frequency of the b-th bin of the color
histogram H computed over the region Ω ∈ I. Given an image
patch I centered at the target, the normalized object histogram
HI
O and background histogram HI

B can be derived from the
target area and the surrounding background area, respectively.

The object likelihood of a given pixel x in I can be obtained
as

P (x ∈ O|I, x) =
P (x ∈ O|I)

P (x ∈ O|I) + P (x ∈ B|I)
. (8)

Here, the foreground and background likelihood can be di-
rectly estimated from color histograms, i.e. P (x ∈ O|I) =
HI
O(bx) and P (x ∈ B|I) = HI

B(bx), where bx denotes the
color bin b assigned to the pixel x.

Hence,
fhist(p) =

∑
x

P (x ∈ O), (9)

where x is the pixel in the bounding box centered at p. The
histogram score function can be efficiently evaluated using the
integral histogram [32].

IV. PROPOSED REAL-TIME COMPLEMENTARY TRACKER

RCT seeks an efficient solution to integrate Siamfc and Sta-
ple. Its components are described in the following subsections.

A. Coarse Translation Initialization

Different from correlation filters which suffer from the
restricted search region, Siamfc holds a large search region,
almost four times the target size. The large search region
enables Siamfc to cope better with fast motion and heavy
occlusion than correlation filters as shown in Figure 1.

Besides, as described in Section III-A, Siamfc extracts deep
feature maps from both the exemplar and search images and
then computes the score map from cross-correlation of the
two maps. Compared with correlation filters using handcrafted
features (e.g., HOG), the deep feature maps in Siamfc are
more effective to encode the semantic appearance variations.
Therefore, together with the global color histogram in Staple,
Siamfc greatly improves the robustness of RCT in terms
of severe deformation, illumination change and background
clutter.

B. Refined Translation Estimation

It has been demonstrated that [24], unlike image classifica-
tion, the shallow layers achieve better tracking performance
than deeper layers. This effect is partly attributed to the
decreasing spatial resolution from the first layers to the last
layers. The score map derived by Siamfc is in low resolution
(17×17) due to strides in the embedding network. As a result,
Siamfc is insufficient for capturing fine-grained spatial detail
which is important for accurate location.

On the other hand, correlation filters using low-level hand-
crafted features (e.g., HOG) retain more fine-grained spatial
details and thus are useful for precise localization. In light of
this observation, a coarse-to-fine searching strategy is adopted
in RCT. We propose to integrate Siamfc and Staple for
translation estimation, where both semantics and fine-grained
details are simultaneously exploited to handle large appearance
variations and sampling ambiguity. RCT first locates the target
coarsely but robustly with Siamfc. Subsequently, the coarse
location is refined by Staple for higher accuracy. Meahwhile,
equipping offline Siamfc with online Staple also helps RCT
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(a)

(b)

Fig. 3: (a) Screenshots of tracking results of RCT on the Jogging-1 sequence. (b) Corresponding response maps of RCT. In
frame 72, the target undergoes heavy occlusion and thus the energy in the derived response map is dispersive compared with
that in the other frames.

adapt to the latest target appearance and thus alleviate confu-
sion with distractors as shown in Figure 2.

Therefore, it’s necessary to initialize Staple with the target
location of Siamfc to expand the search region and refine
location accuracy as well.
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Fig. 4: The values of CSL and adaptive threshold on all frames
of the jogging-1 sequence. In frame 59, the target begins to
undergo heavy occlusion. In frame 78, the CSL value is above
the adaptive threshold T and thus the Siamfc component in
RCT is activated. As a result, the target is re-detected in frame
79.

C. Scale Estimation

In the source codes provided in [11], scale variation is
estimated by processing the search image at several scales
with the a fixed aspect ratio. With no doubt, searching scale at
multiple resolutions significantly increases the computational
cost. To achieve real-time scale adaptive tracking, RCT re-
moves the scale estimation from Siamfc. Instead, Staple and
Siamfc shares a common 1-dimensional scale correlation filter
after the two-stage translation estimation process.

D. Tracker Switch

Most frames in a video are ‘easy’ frames where the tar-
get moves smoothly and its appearance changes slowly. By
contrast, ‘hard’ frames appear only occasionally when the
target undergoes partial occlusion, fast motion or significant
appearance variation. In ’easy’ frames, Staple locates the target
more accurately and efficiently than iamfc because Staple has
a smaller feature stride. However, in ’hard’ frames, Siamfc is
more robust to strong appearance change than Staple. This is
because Siamfc is trained with massive data in an end-to-end
manner while Staple is trained with only limited online data.

Based on this observation, we automatically activate Siamfc
with a tracking switch instead of tracking with Siamfc and
Staple in each frame. In most frames of a given video,
RCT switches Siamfc off to track in real-time. In occasional
challenging frames, RCT switches Siamfc on to track in
a coarse-to-fine manner as described in Sections IV-A and
IV-B, and avoids potential tracking failures. Whether switching
Siamfc on-or-off depends on the tracking status of RCT.

We point out that the tracking status of RCT can be inferred
from the peakiness of the response map of Staple. In the
general case, this response map peaks at the highest and damps
fast from the peak to the boundary. However, in presence of
heavy occlusion, deformation and abrupt motion, the response
map damps slowly due to the sidelobe leakage as shown in
Figure 3. In light of this observation, we design the centralized
sidelobe leakage (CSL) measure to quantify the peakiness of
the response peak and thus evaluate the tracking status. The
lower CSL value means the more reliable tracking result and
thus the better tracking status.

Here we describe the CSL measure in detail. Let ft be a
N ×M matrix representing the response map of frame t. The
location of the response peak is given as

[µ, ν]T = arg max
i,j

f i,jt . (10)

where f i,jt corresponds to the jth element of the ith row of
ft and [µ, ν] stand for the pixel coordinates of the maximum
on the response map.
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The CSL measure of the response map ft is defined as

CSL =

∑N
i=1

∑M
j=1 |i− µ| · |j − ν| · f

i,j
t∑N

i=1

∑M
j=1 f

i,j
t

(11)

where the denominator provides a normalization based on the
amplitude of each pixel on the response map.

In this paper, we assume that a surge of CSL occurs when
the target encounters challenging situations such as occlusion
or fast motion. To robustly detect the surge in CSL, we damp
the fluctuations of CSL with a forgetting rate λ and derive an
adaptive threshold T as CSL′0 = CSL1,

CSL′t = λ · CSL′t−1 + (1− λ) · CSLt,
T = η · CSL′t,

(12)

where λ is an interpolating parameter, η > 1 is an amplified
parameter, CSLt is the CSL measure of ft and CSL′t is a
smoothed version of CSLt.

During tracking, η is fixed while T is updated in each frame
as Equation 12. To robustly detect big fluctuation of CSL,
the interpolated version of CSL, namely CSL’, is computed
to smooth small fluctuation. In RCT, the Siamfc component
is switched on if the CSL value is above T , which indicates
unreliable tracking result and bad tracking status of RCT in the
previous frame. Figure 4 shows the corresponding values of
CSL and T of RCT over all frames in the Jogging-1 sequence.
As shown in 4, there exists a significant surge in the line of
CSL around frame 59. The CSL value in frame 59 is above
the smooth line of the threshold T .

E. Overall Tracking Framework

Here, we present an outline of RCF in Algorithm 1 and
show the diagram of RCF in Figure 5.

Algorithm 1 Real-time Complementary Tracking
Input:

Target state Xt−1 = (xt−1, yt−1, st−1) in frame t− 1.
Output:

Estimated target state Xt = (xt, yt, st) in each frame.
1: if mode = 1 then
2: Estimate the target location (xt, yt) with Siamfc

around (xt−1, yt−1) in frame t. Refine (xt, yt) by search-
ing around (xt, yt) with Staple.

3: else
4: Estimate the target location (xt, yt) with Staple around

(xt−1, yt−1) in frame t.
5: Estimate the target scale st with DSST.
6: Calculate the CSL value from the response map of Staple

as in Equation 11.
7: Update the adaptive threshold T as in Equation 12.
8: if CSL > T then
9: mode = 1

10: else
11: mode = 0
12: Update the correlation filter and color histogram in Staple

and the 1-dimensional correlation filter in DSST.

V. EXPERIMENTS

Here, we present a comprehensive evaluation of the pro-
posed tracker (RCT). Results are reported on three benchmark
datasets: OTB2013, OTB1002015 and VOT2016.

A. Details and Parameters

For all the experiments in this paper, we follow the same
parameter setting of Staple and Siamfc as reported in [19]
and [11] respectively. In this subsection, we mainly detail the
parameter setting related with the CSL measure. The forgetting
rate parameter λ in Equation 12 is set to 0.95 and the ampli-
fying factor η in the adaptive threshold T is set to 1.1. All the
parameters are fixed for all videos and datasets. RCT is imple-
mented in Matlab with MatConvNet[33] and runs on a desktop
computer with a core Intel Core i5-5200 CPU at 2.2 GHz. The
source codes and experimental results are available at https:
//github.com/moqimubai/Realtime-Complementary-Tracking.

B. Baseline Comparison

Here, we compare the proposed tracker RCT with three
trackers (Siamfc, Staple and RCTws) on the OTB2013 bench-
mark. Siamfc and Staple are two baseline trackers while
RCTws stands for a tracker similar to RCT but without the
tracker switch. In other words, both Siamfc and Staple in
RCTws are always used in each frame in a coarse-to-fine
manner.

TABLE I: A comparison of RCT with baseline trackers on
OTB2013

RCT RCTws Staple[19] Siamfc[11]

Mean OP (%) 74.26 65.98 69.17 63.90

Table I showns the mean overlap precision (OP) for four
methods (RCT, RCTws, Staple, Siamfc) on the OTB2013
dataset. OP is computed as the fraction of frames in the
sequence where the intersection-over-union overlap with the
ground truth exceeds a threshold of 0.5. As shown in Table I,
Staple and Siamfc achieve a mean OP of 69.12% and 63.90%
respectively. RCTws, without the tracker switch, makes a com-
promise between Staple and Siamfc and achieves a mean OP
of 65.98%. This is because that the coarse location provided
by Siamfc is so far off the location identified by Staple that
Siamfc distract Staple in during tracking. On contrast, with the
tracker switch, our RCT outperforms both baseline trackers
and achieves a mean OP of 74.26%. We owe the superior
performance of RCT to the elegant combination of Staple and
Siamfc with the automatic tracker switch. With the tracker
switch, RCT takes advantages of the high location accuracy
of Staple and the larget search area of Siamfc at the same
time.Thats the reason why RCT achieves better performance
than RCTsw.

https://github.com/moqimubai/Realtime-Complementary-Tracking
https://github.com/moqimubai/Realtime-Complementary-Tracking
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Fig. 6: Success plots showing a comparison with state-of-
the-art methods on OTB2013 (left) and OTB-2015 (right)
benchmark datasets. Our RCT achieves an average speed of
over 40 fps and outperforms all trackers except C-COT and
DeepSRDCF which run slower than 1 fps.
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Fig. 7: Comparison with respect to robustness to initialization
on OTB2013. We show success plots for both the spatial (SRE)
and temporal (TRE) robustness.

C. OTB Benchmark

We provide a comparison of RCT with 9 trackers
from the literature: C-COT[25], SRDCF[10], Staple[19],
DSST[15], KCF[9], Siamfc[11], SINT[12], DeepSRDCF[24]
and HCF[29]. Among these trackers, C-COT[25], SRDCF[10],
Staple[19], DSST[15] and KCF[9] are based on correlation fil-
ters. Siamfc[11] and SINT[12] are based on Siamese networks.

DeepSRDCF[24] and HCF[29] are based on both correlation
filters and deep learning.

1) State-of-the-art Comparison: Figure 6 shows the success
plots on the OTB2013 and OTB2015 benchmark datasets.
The success plot shows the mean overlap precision (OP),
plotted over the range of intersection-over-union thresholds.
The trackers are ranked using the area under the curve (AUC),
displayed in the legend. On OTB2013, RCT runs with 46 fps
and provides the second best performance, with an AUC score
of 65.2%. Our approach obtains a significant gain of 5.2%
and 4.4% in AUC score compared with Staple and Siamfc.
It’s worth mentioning that, among the ten trackers, only RCT
and Staple achieve state-of-the-art performance and real-time
speed without GPU.

2) Attribute Based Comparison: We perform an attribute
based analysis of RCT on the OTB2013 dataset. All the videos
in OTB2013 are annotated with 11 different attributes, namely:
illumination variation, scale variation, occlusion, deformation,
motion blur, fast motion, in-plane rotation, out-of-plane ro-
tation, out-of-view, background clutter and low resolution.
Despite no explicit deformation or occlusion handling compo-
nent, our tracker performs favorably in cases with deformation
and occlusion as shown in 9.

3) Qualitative Comparison: Due to page limitation, we
compare RCT with other four trackers (Siamfc[11], Staple[19],
DSST[34], KCF[9]) on 11 challenging sequences in Figure
10. Staple performs well in the most sequences. However, it
drifts due to fast motion in sequence skiing and occlusion in
sequence jogging-1 and girl. Siamfc is robust to a number
of challenging situations like occlusion, abrupt motion and
scale change. However, it is sensitive to poor illumination in
sequence carDark and confusing scenes in sequences bolt and
football.

It’s worth noting that the tracking mechanism of RCT
copes well with fast motion, distractors and partial occlusion.
However, like most trackers, RCT drifts to the background in
presence of long-term and/or full occlusion. Figure 8 shows
tracking failures of RCT due to full occlusion. In future works,
we tend to equip RCT with a re-detection [17] and/or re-
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identification[35], [36] module to achieve long-term tracking.

Fig. 8: Screenshots of tracking failures for RCT over two
different videos undergoing long-term and full occlusion. The
videos from top to bottom are Box and Girl2 from the
OTB2015 dataset.

D. VOT2016

The visual object tracking (VOT) challenge is a competition
between short-term, model-free visual tracking algorithms.
Different from OTB, for each sequence in this dataset, a
tracker is restarted whenever the target is lost (i.e. at a tracking
failure). Four primary measures are used to analyze tracking
performance: accuracy (A), robustness (R), expected average
overlap (EAO) and equivalent filter operation (EFO). A is
calculated as the average Intersection-over-Union (IoU), while
R is expressed in terms of the total number of failures. EAO
represents the average IoU with no re-initialization following a
failure. EFO reports the tracker speed in terms of a predefined
filtering operation that the toolkit carries out prior to running
the experiments. For our experiments, we use the latest stable
version of the VOT toolkit (i.e. VOT2016 toolkit). We refer
to [3] for details.

Table II shows the comparison of our approach with the top
5 participants in the VOT2016 challenge. Figure 11 shows a
visualization of the overall results on the VOT2016 dataset. In
the comparison, RCT ranks fifth in terms of EAO and ranks
first in terms of EFO. Among the top five trackers (ranked
by EAO), only RCT achieves the real-time speed almost 22-
fold speed up in EFO compared to the top tracker C-COT.
Despite its simplicity, our RCT improves over recent state-of-
the-art real-time trackers (Figures 6 and 11). RCT outperforms
most of the best methods in the VOT2016 benchmark while
maintaining high frame-rate speed (Figure 6 and Table II).

E. Detailed analysis of RCT

Different base trackers. Our RCT tracker is composed of
two basic cooperative components, the Siamese component,
and the DCF component. To show the effects of different
basic components, we perform two groups of comparison
experiments on OTB2013. The mean overlap precision and
average tracking speed is provided in Table III and Table IV.
We compare two different choices of the Siamese component
including Siamfc[11] and SINT[12] in Table III. It shows that

TABLE II: State-of-the-art in terms of expected average over-
lap (EAO), robustness (failure rate), accuracy, and speed (in
EFO units) on the VOT 2016 dataset. Only the top-5 best
compared trackers are shown. The best and second best values
are highlighted by red and blue fonts.

Staple RCT MLDF SSAT TCNN C-COT

EAO 0.295 0.299 0.310 0.320 0.325 0.331

Failure rate 1.35 1.37 0.83 1.04 0.96 0.85

Accuracy 0.544 0.560 0.490 0.577 0.554 0.539

EFO 11.144 11.63 1.483 0.475 1.049 0.507

Siamfc (74.26% and 46 fps) is slightly less accurate but more
efficient than SINT (75.58% and 40 fps).

We further compare three different choices of the DCF
component including Staple [19], DSST[34] and KCF[9] in
Table IV. Our results show that KCF (60.48 %) is less accurate
than DSST (65.18 %) and Staple (74.26 %) due to the absence
of the scale estimation module. Meanwhile, Staple (74.26%)
performs better than DSST (65.18%) due to the additional
color histogram which is robust to target deformation. Though
DSST runs faster than Staple (given the same cell size for the
HOG[14] feature), RCT with DSST (38 fps) runs more slowly
than RCT with Staple (46 fps). This is a result of the fact that
DSST is less accurate and robust than Staple, which results
in more frequent activation for the Siamese component, hence
increasing the computation.
Different peakiness criterion. The tracking status of our RCT
tracker is inferred from the peakiness of the response map of
the DCF component. Therefore, a good peakiness criterion
can effectively switch Siamfc on in hard frames to avoid
tracking drift and switch Siamfc off in easy frames to avoid
extra computation. To show the effects of different peakiness
criterions, we compare two different choices including our
centralized sidelobe leakage (CSL) and the peak-versus-noise
ratio (PNR) [37]. The CSL value measures the peakiness of
the response map based on each value on the response map.
Nevertheless, the PNR value measures the peakiness only
based on the maximum and minimum values on the response
map.

The comparison of the mean overlap precision and tracking
speed on OTB2013 is provided in Table V. It shows that RCT
with CSL achieves higher accuracy and lower efficiency than
RCT with PNR. This is because CSL obtains more information
from the response map than PNR, which results in slightly
more frequent activation of Siamfc.

TABLE III: Comparison of different Siamese components in
RCT with Staple as the DCF component.

Tracker RCT with Siamfc RCT with SINT

Mean OP (%) 74.26 75.58

Avg. FPS 46 40
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Success plots of OPE - scale variation (28)
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Fig. 9: Success ratio plots on 11 attributes of the OTB-2013 dataset. Trackers are ranked by their AUC scores. Ours method
has achieved consistently the superior performance over the state-of-the-art.
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Fig. 10: Snapshots of RCT and the compared trackers. All sequences come from the OTB2013 benchmark dataset: david,
car4, carDark, jogging-1, suv, girl, bolt, carScale, david3, football, skiing.
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Fig. 11: A state-of-the-art comparison on the VOT2016 benchmark. In the ranking plot (left) the accuracy and robustness rank
for each tracker is displayed. The AR plot (right) shows the accuracy and robustness scores.

TABLE IV: Comparison of different DCF components in RCT
with Siamfc as the Siamese component.

Tracker RCT with Staple RCT with DSST RCT with KCF

Mean OP (%) 74.26 65.18 60.48

Avg. FPS 46 38 34

TABLE V: Comparison of different peakiness criterion in
RCT.

Peakiness Criterion RCT with CSL RCT with PNR

Mean OP (%) 74.26 70.12

Avg. FPS 46 55

VI. CONCLUSIONS AND FUTURE WORK

We present a hybrid tracker (RCT) inspired by the comple-
mentary tracking schemes of Siamfc and Staple. Siamfc and
Staple are integrated into a two-stage coarse-to-fine tracking
framework. An automatic activating mechanism for Siamfc is
designed to achieve a real-time tracking speed. Experiments
on two benchmarks demonstrate state-of-the-art performance
with real-time frame-rates. We believe that considerably higher
performance could be obtained by substituting the two base
trackers in RCT with more advanced trackers. Moreover, the
proposed tracker switch for automatically inferring tracking
status from response maps of correlation filters is generic and
can be incorporated into any similar tracking frameworks.

Although our method achieves significant performance im-
provement, it is limited to single-object tracking. Another
challenge is that, if an object is completely occluded for a
long period of time or if the object leaves the scene completely,
our tracker will learn from incorrect samples and drift to the
background. Some interesting work exploring ways to deal
with these issues has been presented in [38], [39], [40] and in

[41], [36], [35]. Therefore, one interesting avenue for future
work would be extending our tracker to multi-object and/or
long-term tracking with these inspiring ideas.
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